The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gaussian Surface Area and Noise Sensitivity of Degree-$d$ Polynomials

We provide asymptotically sharp bounds for the Gaussian surface area and the Gaussian noise sensitivity of polynomial threshold functions. In particular we show that if f is a degree-d polynomial threshold function, then its Gaussian sensitivity at noise rate ǫ is less than some quantity asymptotic to d √ 2ǫ π and the Gaussian surface area is at most d √ 2π . Furthermore these bounds are asympt...

متن کامل

Average Sensitivity and Noise Sensitivity of Polynomial Threshold Functions

We give the first non-trivial upper bounds on the average sensitivity and noise sensitivity of degree-d polynomial threshold functions (PTFs). These bounds hold both for PTFs over the Boolean hypercube {−1, 1}n and for multilinear PTFs over R n under the standard n-dimensional Gaussian distribution N (0, In). Our bound on the Boolean average sensitivity of PTFs represents progress towards the r...

متن کامل

Bounding the Sensitivity of Polynomial Threshold Functions

We give the first nontrivial upper bounds on the average sensitivity and noise sensitivity of polynomial threshold functions. More specifically, for a Boolean function f on n variables equal to the sign of a real, multivariate polynomial of total degree d, we prove • The average sensitivity of f is at most O(n1−1/(4d+6)). (We also give a combinatorial proof of the bound O(n1−1/2 d ).) • The noi...

متن کامل

Heat and Noise on Cubes and Spheres: The Sensitivity of Randomly Rotated Polynomial Threshold Functions

We establish a precise relationship between spherical harmonics and Fourier basis functions over a hypercube randomly embedded in the sphere. In particular, we give a bound on the expected Boolean noise sensitivity of a randomly rotated function in terms of its “spherical sensitivity,” which we define according to its evolution under the spherical heat equation. As an application, we prove an a...

متن کامل

Deterministic Approximate Counting for Degree-$2$ Polynomial Threshold Functions

We give a deterministic algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-2 polynomial threshold function. Given a degree-2 input polynomial p(x1, . . . , xn) and a parameter > 0, the algorithm approximates Prx∼{−1,1}n [p(x) ≥ 0] to within an additive ± in time poly(n, 2 ). Note that it is NP-hard to determine whether the above probability is nonzer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: computational complexity

سال: 2011

ISSN: 1016-3328,1420-8954

DOI: 10.1007/s00037-011-0012-6